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series of subsidiary max ima  on either side. As the 
thickness is increased, these subsidiary max ima  come 
closer and closer, unti l  in the l imit ing case one would not 
observe them at all (it would require an infinite re- 
solving power for this), but  only a uniform intensi ty  
corresponding to an average over a cycle. Performing 
this average, one obtains for the intensi ty  an expression 
1 - I  tanhc~ I, where c o s h ~ = y  of equation (2) (Ranla- 
chandran,  1944), which is identical with tha t  given in 
Table 1 under Ewald. Incidental ly ,  it m a y  be noted 
that  the dynamica l  theory also gives Prins 's  formula for 
an absorbing crystal (Kohler, 1933) from which 
Darwin 's  formula can be derived by the process given 
above. It  is thus grat i fying tha t  the two theories, with 
their  entirely different mathemat ica l  techniques, lead 
to identical  results when the appropriate  physical 
assumptions are put  in. 

I t  would be clear from the above tha t  the problem of 
the Bragg reflexion by a perfect non-absorbing, or not 
sufficiently absorbing, crystal  plate requires a more 
detailed specification of the conditions at the back of 
the plate. Ewald & Schmid (1936) have shown that ,  
given any  such specification, the exact in tensi ty  curve 
can be obtained from Ewald ' s  solution by simple 
considerations of optical path without rediscussing the 
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dynamics  of field propagation. This can also be done by 
the Darwin method, using the mathemat ica l  procedure 
given by Ramachand ran  (1942, 1944). 

I am very grateful to Prof. Ewald for some discussions 
by correspondence on this subject and to the Royal  
Commission for the Exhibi t ion of 1851 for the grant  of 
a research scholarship. 
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On the Patterson Transforms of Fibre Diagrams 
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A metho(l i.~ given for the calculation of a two-dimensional Patterson transfi)rrn fr()m the intensity 
data of a fibre diagram. This vector map is a section parallel to the fibre axis through the cylindrically 
symmetrical three-dimensional Patterson transform of tile fibre. 

1. It has become a fairly general practice to begin the 
theoretical part  of the X-ray analysis of single crystals 
by computing the Pat terson diagram or vector map. 
This is the Fourier t ransform of the intensi ty data,  and 
it offers a convenient synopsis of what can be derived 
about  the crystal structure without introducing any  
assumptions.  

From powder or ' amorphous '  diagrams statistics 
of absolute values of atomic distances can be obtained 
from a similar t ransform, as Zernike & Prins (1927) 
have pointed out. (Since orientation is random in 
crystal powder or amorphous material,  it is evident  tha t  
no information whatever can be derived fronl these 
diagrams about the direction of the interatomic dis- 

tances.) Warren  and his school have used this method 
with considerable success in their  investigations of glass, 
rubber,  etc. The equivalent  method of tackling the 
typical  fibre diagrams, however, seems never to have 
been developed, and it was, therefore, considered worth 
while to fill this gap in the theory because the fibre 
texture is, in most macromolecular  substances, the 
highest degree of orientation a t ta ined up to now. 

2. In the following we confine ourselves to the ideal 
fibre texture, defined by (a) strict periodicity in the 
direction of the fibre axis, and (b) completely random 
orientation of azimuth round this direction. No 
assumptions need be made as to a more or less regular 
arrangement  in directions other than tile fibre axis. 
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As is well known, the intensity H scattered in a 
direction s by a density distribution p(r) is, apart from 
trivial factors such as polarization, given by 

H(h)= fr f r ,  P(r)p*(r')exp{2rri(h, r-r')}drrdrr, , (1) 

where h =  (s-s0)/A, s o and s are unit vectors of the 
primary and diffracted beams respectively, A is the 
wave-length of the X-rays, and drr and dr r, are volume 
elements. 

Taking together contributions to the integral with 
fixed distance r -  r '  = y, and introducing the Patterson 
function 

¢(Y) = ~7 p(r)p*(r-y)dr~, (2) 

where V is the irradiated volume, (1) becomes, as usual, 

H(h )=  V fy¢(y)exp{2ni(h, y)}dry, (la) 

the integral being extended over all the distances in the 
fibre. 

I t  is convenient to introduce at this point cylindrical 
polar co-ordinates. The vector y will be given by its co- 
ordinate z in the fibre direction, the distance x from the 
fibre axis through the origin, and an azimuthal angle 0~. 
The scattering vector h (see Fig. 1) is defined by the 
corresponding Bernal co-ordinates ~ and ~. The plane 
defined by z and h can be taken as the zero plane with 
respect to the azimuthal angle c~. Then (1 a) becomes 

× exp {2rri(~z + ~x cos a)} xdxdzd~z. 

Now, in a perfect fibre structure as defined above, 
though the density p of the single fibre may have no 
symmetry whatever, the distance distribution function 
¢(y) has axial rotation symmetry; any interatomic dis- 
tance will be found with random azimuth around the 
fibre direction. This means that  ¢ is a function of the 
co-ordinates z and x only. The integration over a can 
then be carried out immediately, giving 

H(~' ~)- 2n f : f  . ¢(z'x) I°(2zr¢x) exp (2rri ~z) (lb) 

where Io(2n~x ) is the Bessel function of zero order. 
Since ¢(z, x ) = ¢ ( - z ,  x)--combination of centro- 

symmetry with axial symmetry-- the  complex form 
exp (2zri~z) can be replaced by cos (2n~z). Moreover, ¢ is 
periodic in z, since this is true forp according to assump- 
tion (a). Thus 

¢(z, x) = ~] Ck(x) cos 2nkz, (3) 
k 

if the fibre period is for convenience normalized to 1. 
In the usual way, H is then found to be appreciable only 

for integral values of ~, the integration giving for these 
values 

H(k' g)- 2nN f / Ck(x) (lc) 

where N is the number of periods in the fibre direction. 
By means of the integral equation (lc) each Fourier 

coefficient Ck(x) in the sum (3) is connected with the 
intensity distribution H(k, ~) on the kth layer line of the 
fibre diagram. The Ck(x) can be solved from these 
equations, for any value of" x, by means of a well- 
known theorem on Bessel functions (Courant & Hilbert, 
1931, p. 424). Thus 

2n ~ 
Ck(x) = N-[~ J0 g(k, ~) Io(2n~x ) ~d~. (4) 

Fibre axis 

- so/~ 
h s/A 

Fig. 1. Cylindrical co-ordinates of a vector in the fibre space 
and a vector in reciprocal space. 

Equations (3) and (4) together define a two-dimensional 
Patterson function, containing all the information 
about interatomic distances which can be derived 
directly from the fibre diagram. In particular, ¢0(x) 
alone, the Bessel transform of the intensity on the 
equator, gives the radial distribution function of the 
projection in the direction of the fibre axis; it will 
provide information on the lateral packing of the 
chains. 

3. Finally, although the case has no practical im- 
portance, it may be remarked that  essentially the same 
result is arrived at in the case of the single crystal 
rotation diagram. Here, ¢ itself has no cylindrical 
symmetry; H(h) at any moment is dependent on the 
orientation of the crystal. We must now define the 
azimuth a of a vector y in the crystal with respect to 
a given crystal plane parallel to the rotation axis; the 
orientation of the crystal can be defined by the angle/? 
between this crystal plane and the plane (h; z). What 
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we measure  is the  average  over  fl of H, which brings the  
problem back to one of cyl indrical  s y m m e t r y :  

1 

x exp [2rri{~z + ~,r cos (~ +/3)}] x dx dz dot dfl. 

E x p a n d i n g ,  
+ 0 5  

exp {2rri~z cos (o~ +/3)} = 7E i*lz(2rr~x) exp {il(ot +/3)}, 
- c c ,  

+ o o  

and  ¢(z, x, a) = X era(z, x) exp ( - ira:z). (5) 
- - 0 0  

The  in tegra t ion  over a gives 

- x) itll(2n~x) 

× exp (ill3 + 2ni~z) xdxdzdfl.  

I n t e g r a t i n g  over fl, all t e rms  of the  sum over  l give 
zero, wi th  the  excep t ion  of l =  0: 

H(.~, g)= 
f ~ f  : ¢o(Z, x)Io(2n~x)cxp (2rri~z) xdxdz,  2n 

V 

where,  f rom (5), 

Co(z, x ) : 2~ j ,  ¢(.-, x, ~) g~. 

This leads us back to the  case of the  fibre d iagram,  
equat ion,  (1 b). 
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A preliminary examination of the crystal structure of 2, 2'-bipyridyl and its relation to biphenyl. 
By F. WM. CAGLE, JR. Institute for Advanced Study, Princeton, New Jersey, U.S.A. 

(Receired 26 

Crystals of 2,2'-bipyridyl suitable for a single-crystal 
s tudy are difficult to obtain. The material usually crystal- 
lizes in very complex aggregates. Small but satisfactory 
prisms were prepared by Prof. Francis H. Case, Temple 
University,  Philadelphia, Pennsylvania.  The compound 
had been carefully purified (m.p. 69-70 ° C.). 

Rota t ion and Weissenberg pat terns were taken about 
the b- and c-axes. The unit  cell has the dimensions 
a=5 .51  A., b=6.24  A., c=13.68 A., f l=120  °. When 
indexed, the following interferences were found: hkl in all 
orders, hOl when l = 2n, 0k0 when k : 2n. These data  are 
consistent with the choice of the space group P2~/c-C~h. 
The density of the crystals, determined by flotation in a 
solution of potassium iodide, was 1.26 g.cm. -a From this 
and the trait-cell dimensions we calculate that  it contains 
1.97 molecules. This indicates two molecules per unit  cell 
and would require that  these have a center of symmetry.  
This, taken with the observation (Fehhnan & Cagle, tin- 
published) that  the ultra-violet spectrum of 2,2'-bipyridyl 
dissolved in a non-polar solvent is like that  reported for 
biphenyl (O'Shaughnessy &. Rodebush, 1940), indieat.es 
considerable resonance energy. 

The entire problem of eoplanarity of the benzene rings 
in biphenyl and its analogues, which are not subst i tuted 
in the o,o'-positions, has a t t racted a great deal of interest. 
Pickett ,  Walter & France (1936), as well as O'Shaugh- 
nessy & Rodebush (1940) and Rodebush & Feldman 
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(1946), have suggested, based on ultra-violet a.bsorptiol~ 
data, that  tile rings of such compomlds t.end toward 
coplanarity. 

On the other hand, Karle & Brockway (1944) have put  
forth objections to the eoplanar structure for biphenyl. 
It. was found that  electron diffraction data  could be fitted 
as well by a non-coplanar molecule as by a eoplanar one. 
In addition, it was observed tha t  one might expect, some 
interference between the hydrogen atoms in the o,o'. 
positions. 

In view of these facts, one is led to conclude that  in 
s(>lutions of compounds of this t3~pe, there is a definite 
tendency toward eoplanarity. In the crystalline state this 
tendency results in coplanar molecules. I t  is significant 
to observe that  there ha.re been three published deter- 
minations of the space group of biphenyl (Clark & 
Pickett ,  1931 ; Dhar, 1932; Hengstenberg & Mark, 1929). 
All of these agree that  it is P2~/c-C5a with two molecules 
per trait cell, and any error seems most unlikely. 

In the ease of 2,2'-bipyridyl, one concludes tha t  the 
molecule exists in the crystal with the rings coplana.r and 
with the nitrogen a.toms trans to the bond joining the 
rings : 
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